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Abstract. More and more optimization problems arising in practice can not be solved by traditional
optimization techniques making strong suppositions about the problem (differentiability, convex-
ity, etc.). This happens because very often in real-life problems both the objective function and
constraints can be multiextremal, non-differentiable, partially defined, and hard to be evaluated. In
this paper, a modern approach for solving such problems (called global optimization problems) is
described. This approach combines the following innovative and powerful tools: fractal approach
for reduction of the problem dimension, index scheme for treating constraints, non-redundant par-
allel computations for accelerating the search. Through the paper, rigorous theoretical results are
illustrated by figures and numerical examples.
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1. Constrained Optimization as a Decision Model

The world today exhibits booming innovations in the realm of technologies provid-
ing unbelievable diversity of products and services of high quality. There are two
important sources for the best decisions leading to these impressive achievements.

It is very traditional that essential advancements in the modern practice of cre-
ating technical systems and technological processes of high efficiency are based on
the employment of new principles, new materials, new physical effects and other
new discoveries. And it is very often that these breakthroughs play the key role in
the designation of the general structure of the objects to be designed.

Another typical source of significant improvements is in the selection of the
best combination for the set of the object’s parameters (with the general structure
or the linkage being already set defined). Variations of these parameters (geomet-
rical sizes, electrical and strength specifications, etc.) can substantially affect the
performance characteristics of the object.

New discoveries (related to any particular area of design) are relatively rare
events originated by some costly research activities. But the techniques for setting
the best combinations for the values of the objects parameters can be much more
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universal (not necessarily oriented towards some particularistic tasks) and notice-
ably less expensive. The information these techniques are calling into requisition
is commonly obtainable as the result of observing some limited amount of trial
options. Today it is typical that these trial options are not the real examples to
be tested experimentally. Numerical (computer aided) analysis of the mathemat-
ical model simulating the performance of the real object is the modern tool for
observing trial options.

The above model includes the set of n parameters

w = (w1, . . . , wn) ∈ S

which are to be assigned with some particular values from the given domain of
search

S = {w ∈ Rn : aj � wj � bj , 1 � j � n} .

Performance characteristics of the object within the model are presented by the set
of m + 1 real functions fi(w), 1 � i � m + 1. We assume that these functions are
selected in such a way that the diminution of their values corresponds to the better
performance of the object.

One of the widely used concepts of the best decision linked with the above
model classifies all the options w ∈ S as either admissible or not admissible. The
admissible options have to satisfy the constraints set by the inequalities

gi(w) = fi(w) − qi � 0, 1 � i � m .

These requirements for the performance indexes fi, 1 � i � m, to be below some
preset levels qi, 1 � i � m, usually reflect some necessary conditions for the
object to actually function. Therefore, the admissibility of the choice w ∈ S may
be interpreted as the feasibility of the corresponding object.

Within the concept under consideration, one of the performance indexes is
treated as the major criterion (we assume that the subscript m + 1 is reserved
for this purpose) and the best solution w∗ ∈ S has to minimize the function
ϕ(w) = fm+1(w) over the set of all admissible options, i.e.,

ϕ(w∗) = min{ϕ(w) : w ∈ S, gi(w) � 0, 1 � i � m} .

Now the problem of the best decision may be interpreted as the mathematical
problem of constrained optimization.

Any implementation of the decision w∗ (if it does exist) could be carried out
with some limited accuracy. Therefore, this decision may be of interest in applica-
tions only if it has an admissible vicinity in S ⊂ Rn characterized by some positive
volume. To meet this requirement we introduce the concept of an ε-reserved solu-
tion wε which (if it exists) wittingly has such a vicinity. This solution is defined by
the relations.

ϕ(wε) = min{ϕ(w) : w ∈ S, gi(w) � −ε, 1 � i � m} ,
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where εR = (ε1, . . . , εm) is the vector of positive reserves εi for each i-th con-
straint, 1 � i � m.

2. Trials and Partial Computability of Performance Characteristics

To select a trial option w ∈ S within the above model (henceforth we will refer
this operation as executing a trial at the point w) it is necessary to figure out the
corresponding values fi(w), i � i � m + 1, of the performance characteristics.
But it is could happen that some of the functions fi , 1 � i � m + 1 are defined
only at those points from S which satisfy a subset of several constraints. This is
very often a case in the problems of optimal design, because if some necessary
conditions for the object to function are not met, then some other characteristics
of its performance may not be defined. Therefore, we admit that each function fi ,
1 � i � m + 1, is defined and computable only in the corresponding domain
Qi ⊂ S, where

Q1 = S, Qi+1 = {w ∈ Qi : gi(w) � 0}, 1 � i � m .

This assumption, obviously, imposes the order in which the functions fi , 1 � i �
m + 1, are to be numbered. Note, that Qm+1 is the set of all admissible options.

Under this suppositions the initial problem of constrained optimization has to
be rewritten in the form

ϕ(w∗) = min{fm+1(w) : w ∈ Qm+1}
which is to be referred as the problem with partially defined objective function
and constraints. This new type of constrained problem notably differs from the
more traditional models with everywhere computable objective function and the
left-hand sides of the constraints (see, for instance, Horst and Pardalos, 1995) and
the references given therein).

Any trial in this new model carried out at the point

w ∈ Qν, w /∈ Qν+1, 1 � ν � m + 1 ,

causes some successive evaluations of the functions gi(w), 1 � i � ν, yielding the
values

gi(w) � 0, 1 � i < ν, gν(w) > 0 ,

where the last inequality is unessential if ν = m + 1. To compact the notations we
introduced the complementary empty set Qm+2 and assumed that gm+1 = fm+1.

As follows from the above discourse each point w ∈ S is characterized by
the index ν = ν(w) ant this index being detracted a unity gives the number of
constraints met at this point. In the sequel, the dyad

z = gν(w), ν = ν(w) ,
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produced by a trial executed at the point w ∈ S will be referred as the outcome of
this trial.

Next important feature of the problem under consideration is that functions fi ,
1 � i � m + 1, are commonly not given by analytical formulas (at least some of
them are not). Raising complexity of the object to be designed causes sophistica-
tion of the corresponding mathematical models. Consequently, the main (and very
often the only) available tool for simulating the object’s behaviour and assessing
its performance is the computer-aided numerical analysis. Thus, each trial may be
interpreted as running some black box to produce the outcome for the preset input
w ∈ S. These runs could require substantial computer resources and therefore
should not be too numerous. As a result we have a problem of assessing the best
point w∗ (which is also called the minimizer) and the minimal value ϕ∗ = ϕ(w∗)
with some limited amount of trials.

This means that the satisfactory estimates may not be attainable by the item-by-
item examination of all possible variants (which is typical for the search procedures
based on testing all the nodes of some uniform grid embedded into the domain
of search). The insufficiency of this brute force approach drives to the necessity
for some purposeful selection of options while searching for the best solution.
Some mathematical schemes aiming to achieve this economic selection are based
on the assumption that it is possible to approach the best option by some small
sequential improvements of the current variant. Each of this small improvements
is to be achieved by selecting the better options arising as the results of some local
variations of the parameters characterizing the current version (see, for instance,
Kelly, 1999).

But for the models with essentially nonlinear (and nonconvex) functions fi ,
1 � i � m, it is very often the case that the domain of search contains the set of
points which are admissible and are the best in some of their vicinities, however
they are worse than the minimizer w∗. In this type of problems, which are usually
referred as the multiextremal ones, the local procedures are likely to be entrapped
in the vicinity of one of such local minimizers. Therefore, they need to be supplied
with some initial points from the region of attraction to the global minimizer w∗.
Nevertheless this information is mostly not attainable. Multiple local runs from dif-
ferent (somehow scattered) initial points are also not able to assure the attainment
of the global optimum.

It should be mentioned that in some problems local solutions may be absolutely
not appropriate. If, for example, ϕ is the indicator of the reliability and we are
interested in assessing the worst case, then we definitely need the estimate for ϕ∗.
Approaches for searching the global solutions in multiextremal problems with the
unknown region of attraction and the trial outcomes produced by running the black
box are often based on the quite natural assumption that any limited change in
the parameters of the object yields some limited changes in the characteristics of
its performance. This assumption can be justified by the fact that in real systems
the energy of change is always limited. One of the most popular mathematical
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formulations of this property is the Lipschitz continuity condition

|fi(w
′′) − fi(w

′)| � Li‖w′′ − w′‖, w′, w′′ ∈ Qi

which assumes that the differences of the function fi , 1 � i � m+1, are majorized
with some measure

‖w′′ − w′‖ �
{∑n

j=1

(
w′′

j − w′
j

)2
}1/2

of differences in the argument multiplied by factor Li . The values Li , 1 � i �
m + 1, are referred as Lipschitz constants.

The existence of these conditions provides the possibility to use the already
obtained trial outcomes for classifying some subareas in the domain of search as
definitely not containing the minimizer. This allows to economize the search effort
by concentrating further trials in other subareas. Search techniques successively
selecting trial points with the account of Lipschitz conditions substantially outper-
form the item-by-item examination methods (see, for instance, Evtushenko, 1985;
Pinter, 1985).

In the sequel we admit that the constrained problem under consideration is the
multiextremal one and the corresponding performance characteristics are Lipschit-
zian.

3. Reduction to Core Unconstrained Problem

We commence by considering the core univariate case with the only real parameter
x and the range of search S = [a, b]. In this case we may interpret the outputs of
trials introduced above as the values of some real function

f (x) = gν(x), ν = ν(x) ,

defined everywhere in the range [a, b]. This function is either a value of the left-
hand side of the first constraint violated at the point x (if ν � m), or f (x) is the
value of the function ϕ = gm+1 to be minimized (if ν = m + 1). Figure 1 presents
such a function (with arcs depicted by solid lines) for the case m = 2. For the sake
of illustration, indexes of the points from the subranges Qi , 1 � i � 3, are plotted
at the top of the picture. Not that the admissible set Q3 is of two disconnected parts
(marked by thick lines) and, thus, the problem is multiextremal.

The main idea of our approach is to reduce the initial constrained problem to
the unconstrained one

�(x∗) = min{�(x) : x ∈ [a, b]} ,

where

�(x) =
{

f (x), ν(x) � m,

f (x) − ϕ∗, ν(x) = m + 1.
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Figure 1. Function f (x) (the solid line) built with arcs of the partially defined functions g1(x),
g2(x) and ϕ(x). Function �(x) coincides with f (x), while x ∈ Q1\Q3, and differs from f (x)

(the dotted line), while x ∈ Q3.

The sought value ϕ∗ is not supposed to be known. At this stage of contemplation
we consider just the existence of the function �(x) linked with the unconstrained
problem. The new problem and the initial one have the coincident sets of min-
imizers, since the function �(x) is strictly positive at all points which are not
solutions to the constrained problem, while it vanishes at the points of minimizers.
This function (see the example presented on Figure 1) coincides with the function
f (x), while x ∈ Q1\Q3, and it does not coincide (see the dotted line) with f (x),
while x ∈ Q3.

Note that, owing to our assumptions, the arcs gν(x), x ∈ Q3, of the function
f (x) are Lipschitzian with constants Lν . The same is true for the arcs of the
function �(x). Our next step is to annihilate these differences between the arcs
by introducing the divided function

ψ(x) =
{

gν(x)/Lν, ν � m,

(gν(x) − ϕ∗)/Lν, ν = m + 1,

with the arcs being Lipschitzian in each set Qν , 1 � ν � m + 1, with the unique
constant L = 1. This function may have some discontinuities at the a priori un-
known boundary points of the sets Qν . These points are jump discontinuities also
of f (x) and of �(x) (see Figure 1). Nevertheless it is still possible to evaluate the
location of the global minimizer x∗ having the outcomes of k trials executed at the
points x1, . . . , xk from [a, b].

Indeed, due to the Lipschitz condition, the value ψ(x) is strictly positive if x

satisfies the inequality

min{ψ(xi) − |x − xi | : 1 � i � k} > 0 .

Figure 2 gives a particular example for the case k = 4, where the set of points
satisfying the above inequality is presented by the union of 4 open subintervals
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Figure 2. The union of 4 open subintervals (marked by thick lines) does not contain the global
minimizer.

in [a, b] shaded below the real axis. Note that the function ψ(x) on this picture
corresponds to the problem represented on Figure 1.

As a consequence, we obtain the inclusion

x∗ ∈ {x ∈ [a, b] : |x − xi | � ψ(xi), 1 � i � k}

which can serve as an estimate for the minimizer. Actually, this estimate employs
an additional assumption that each subset of arcs ψ(x), x ∈ Qi , of the function
ψ(x) has Lipschitzian (with the unique unity constant) continuation ψi(x) through-
out [a, b] (i.e. ψ(x) = ψi(x), x ∈ Qi , 1 � i � m + 1) an we are to keep this in
mind in further consideration.

Under the above conditions it is possible to assess the global minimizer by
effectively exploring the function ψ(x) with trials. To do so we have to assign
some values to the Lipschitz constants (which are mostly unknown) and to the
sought optimal value ϕ∗. We shall overcome these difficulties in some adaptive
way by replacing all the above unknowns with their running estimates.

The suggested scheme for reducing the constrained problems to the uncon-
strained ones substantially differs from the approaches based on the introduction
of penalty functions (which is typical for local optimization techniques; see, for
instance, Fiacco and McCormic, 1990; Bersekas, 1996). This difference is not only
in the possibility to treat partially defined constraints and the objective function,
but also in the separate account of each constraint and in the termination of any
trial with the advent of the first violated constraint. Therefore, the suggested ap-
proach may be efficient in handling constrained problems also in the case when
all functions gi(x), 1 � i � m + 1, are defined all over the range [a, b]. This is
due to the fact that, within the suggested scheme, the trials omit evaluation of the
values gν+1, . . . , gm+1 if gν > 0, which reduces the necessary computational effort.
Moreover, it is possible to additionally accelerate the solution of the constrained
problem by numbering the left-hand sides gi , 1 � i � m, of the constraints in
such an order that small numbers will correspond to the constraints which are less
cumbersome to verify.

The exposed above ideas are employed in the algorithm described below. This
algorithm selects the trial points reposing on the already obtained outcomes.
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4. Index Method for Global Optimization

ALGORITHM. The first two trials are carried out at the points x0 = a and x1 = b.
The selection of any subsequent point xk+1, k � 1, is determined by the rules:

1. Renumber the points x1, . . . , xk of the previous trials by subscripts in increa-
sing order of the coordinate, i.e.,

a = x0 < · · · < xi < · · · < xk = b ,

and juxtapose them the values zi = f (xi), 1 � i � k, computed at these
points.

2. Construct the sets Iν containing subscripts of all the trial points in which the
values of the corresponding functions gν were estimated, i.e.,

Iν = {i : 1 � i � k, ν(xi) � ν}, 1 � ν � m + 1 .

3. Compute the running lower bounds

µν = max{|gν(xi) − gν(xj )|/(xi − xj ) : i, j ∈ Iν, i > j}
for the unknown Lipschitz constants Lν of the functions gν , 1 � ν � m + 1.
If the set Iν contains less than two elements or if the above formula yields a
zero value, assume that µν = 1.

4. For all non-empty sets Iν , 1 � ν � m + 1, find the values

z∗
ν =

{
min{zi : i ∈ Iν}, Iν+1 = ∅,

−εν, Iν+1 �= ∅,

where εR = (ε1, . . . , εm) is the preset vector of positive reserves introduced
in the definition of an ε-reserved solution and Im+2 = ∅ (by definition). The
running integer value ω meeting the conditions Iω �= ∅, Iω+1 = ∅ may
be interpreted as the subscript of the ‘running objective function’ gω(x) the
algorithm is minimizing. Thus, z∗

ω is an upper bound for the minimal value
of this function. Some different functions may play this role in the course of
search until ω attains the value m + 1. In this last case z∗

m+1 is the running
estimate for ϕ∗.

5. Compute the characteristic R(i) for each interval (xi−1, xi), 1 � i � k,
where

R(i) =




�i+ (zi−zi−1)
2

r2µ2
ν�i

−2
zi+zi−1 − 2z∗

ν

rµν

, ν = ν(xi−1) = ν(xi),

2�i − 4(zi − z∗
ν)/rµν, ν = ν(xi) > ν(xi−1),

2�i − 4(zi−1 − z∗
ν)/rµν, ν = ν(xi−1) > ν(xi),

�i = xi − xi−1, 1 � i � k. The preset parameter r > 1 serves to ensure that
the product rµν may be used as an upper bound for the Lipschitz constant Lν

(see Theorem 1 below).
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Figure 3. Objective function ϕ and functions g1, g2 from the left-hand sides of the constraints.
Vertical strokes mark the points of trials generated by the IMR. Strokes separated in three
series with regard to the value of indexes (increasing from top to bottom).

6. Execute the next trial at the point

xk+1 = (xt + xt−1)/2 − (zt − zt−1)/2rµν ,

where ν = ν(xt−1) = ν(xt ); if ν(xt−1) �= ν(xt ), then the second term in the
right-hand side of the above equation has to be omitted. Integer t corresponds
to the interval with the maximal characteristic R(t) � R(i), 1 � i � k.

These rules may be appended with the termination criterion which truncates the
sequence of trials if �t � ε, where ε > 0 is the preassigned accuracy of search.
We will refer the described algorithm as Index Method with Reserves (IMR for
short).

For the sake of illustration Figure 3 presents a constrained problem (case m = 2)
solved by the IMR in the range [0, 0.8] at r = 3, ε1 = ε2 = 0.01 and ε =
0.0001. The points of 50 trials executed in this run are marked by vertical strokes
beneath the real axis. They are separated in three series with regard to the values
of indexes; top, middle, and bottom series respectively correspond to ν = 1, ν = 2
and ν = 3. Observable concentration of trials corresponds to the vicinity of the
global minimizer.

THEOREM 1. (convergence conditions; see Strongin and Sergeyev, 2000). As-
sume that the constrained problem has an ε-reserved solution and the following
conditions are satisfied:

1. Each subrange Qi , 1 � i � m + 1, is the finite union of positive length
x-intercepts.

2. Each function gi(x), x ∈ Qi , 1 � i � m+1, admits some Lipschitzian (with
the constant Li) continuation throughout [a, b].
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3. Reserves corresponding to the constraints active at the minimizer (i.e.,
gν(x

∗) = 0) satisfy the inequalities

0 < 2εν < Lν(β − α) ,

where [α, β] is the admissible interval containing x∗ (see the right one of the
two shaded intervals on the Figure 1).

4. Reserves corresponding to the constraints not active at the minimizer (i.e.
gν(x

∗) > 0) satisfy either the above inequalities or the inequalities

0 < εν < |gν(x
∗)| .

5. Since some step, the inequalities

rµν > 2Lν, 1 � ν � m + 1 ,

are met for the running values µν .
Then:

1. The minimizer x∗ is the limit point of the sequence {xk} generated by the IMR
for the constrained problem at ε = 0 in the termination criterion.

2. Any limit point of the sequence {xk} is a solution to the constrained problem.
3. If the above conditions for the reserves are not met, then for any limit point

x̄ of the sequence {xk} is true that

ϕ(x̄) = inf{ϕ(xk) : 1 � k < ∞, xk ∈ Qm+1} � ϕ(xε) .

It is also proved (see Strongin and Sergeyev, 2000) that augmentation of the re-
serves (while the conditions of Theorem 1 are still met) speeds up the convergence
process. For example, the solution of the problem from Figure 3, which terminated
after 50 trials at ε1 = ε2 = 0.01, requires 42 trials at ε1 = ε2 = 0.05 and 37
trials at ε1 = ε2 = 0.1. But the interval [α, β] and the values gν(x

∗) introduced in
the conditions of Theorem 1 are mostly unknown which tangles implementation of
these conditions for selecting reserves. To overcome these difficulties it is possible
to propose some mechanism for adaptive selection of the running values for the
reserves (see Strongin and Sergeyev, 2000).

5. Multidimensional Case: Fractal Approach

As it was already mentioned, optimization techniques based on the assumption
of Lipschitzian conditions and selecting each subsequent trial through analysis
of all previously computed (and recorded) functions’ values require substantially
fewer trials than the plain item-by-item examination on some uniform grid of trial
points. Unfortunately, such a selection turns into solving an auxiliary multidi-
mensional problem of increasing multiextremality (along with the accumulation
of trial outcomes) at each step of the search process. I.e., the decision rules of
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any such algorithm aiming to effectively use the acquired search information for
reducing the amount of trials needed to estimate the sought optimum include an
inherent multiextremal optimization problem of the same dimensionality. But, as
it was demonstrated above, the univariate case is effectively solvable. Therefore it
is of interest to present the multivariate constrained optimization problem by its
univariate equivalent which may be effectively solved using the technique similar
to the presented above.

A possible way to do so is to employ a single-valued Peano curve y(x) continu-
ously mapping the unit interval [0, 1] on the x-axis onto the unit hypercube D and,
thus, yielding the equality

{y(x) : x ∈ [0, 1]} = D ,

where

D = {y ∈ Rn : −2−1 � yj � 2−1, 1 � j � n} .

These curves, first introduced by Peano (1890) and Hilbert (1891), ‘fill’ the cube D,
i.e., they pass through every point of D, and this gave rise to the term space filling
curves; see survey (Sagan, 1994). It is important to lay stress on the fact that while
x passes an intercept in the interval [0, 1] the corresponding image y(x) covers
some volume (but not a line) in the hypercube D. These curves having dimensions
exceeding unity are typical examples of the so-called fractal objects.

By introducing transformation

yj = (wj − (aj + bj )/2)/ρ,

ρ = max{bj − aj : 1 � j � n},
and the extra constraint

g0(y) = max{|yj | − (bj − aj )/2ρ : 1 � j � n} � 0,

it is possible to present the initial constrained problem defined in the hyperinterval
S as the one defined in the ‘standard’ domain of search D:

ϕ(y∗) = min{ϕ(y) : y ∈ D, gi(y) � 0, 1 � i � m}.
Now it can be rewritten in the equivalent univariate form

ϕ(y∗) = ϕ(y(x∗)) = min{ϕ(y) : x ∈ [0, 1], gi(y(x)) � 0, 1 � i � m}.
Notations gi(y), 1 � i � m, are used for brevity; to be precise we had to write
gi(w(y)). The employed transformation of the hyperinterval S into the unit cube
D aims not to alter the relations of Lipschitzian properties in dimensions.

Space-filling curves y(x) are not presentable by any analytical formula. They
are defined as the limit objects linked with some successive joint partitioning of
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Figure 4. Subcubes of the second partition (case n = 2, M = 2).

the ranges for the argument (x ∈ [0, 1]) and for the value (y ∈ D). Let us consider
an important example of such a scheme ascending to Hilbert (see Strongin and
Sergeyev, 2000).

PARTITION SCHEME. Divide the cube D into 2n equal hypercubes of the ‘first
partition’ by cutting D with n mutually orthogonal hyperplanes (each plain is par-
allel to one of the coordinate ones and passes through the middle points of the D

edges orthogonal to this hyperplane; note that each of these subcubes has the edge
length equal to 2−1. Use index z1, 0 � z1 � 2n − 1, to number all the subcubes ob-
tained in the above partitioning; each particular subcube is, henceforce, designated
D(z1). Then divide (in the above manner) each of the obtained first-partition cubes
into 2n second-partition subcubes numbered with the index z2, 0 � z2 � 2n − 1.
Each particular subcube obtained by partitioning of D(z1) is designated D(z1, z2)

and it has the edge length equal to 2−2; see Figure 4 (case n = 2). Consequently
cutting each hypercube of a current partition into 2n subcubes of the subsequent
partition (with a twice shorter edge length) obtain hypercubes D(z1, . . . , zM) of
any M-th partition satisfying the inclusions

D ⊃ D(z1) ⊃ D(z1, z2) ⊃ · · · ⊃ D(z1, . . . , zM) .

Next, cut the interval [0, 1] into 2n equal parts. Each particular part is designated
d(z1), 0 � z1 � 2n − 1. The numeration streams from left to right along the x-
axis. Then, once again, cut each of the above parts into 2n smaller (equal) parts,
etc. Designate d(z1, . . . , zM) the subinterval of the M-th partition. The length of
such an interval is equal to 2−Mn, i.e., it is equal to the volume of the subcube of
M-th partition. Assume that each interval contains its left end-point, but it does not
contain its right end-point. The only exception is the right end-point equal to unity:
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it belongs to its interval. Obviously,

[0, 1] ⊃ d(z1) ⊃ d(z1, z2) ⊃ · · · ⊃ d(z1, . . . , zM) .

DEFINITION OF y(x). Present the left-end point v of the subinterval

d(z1, . . . , zM) = [v, v + 2−Mn)

in the binary form

0 � v =
∑Mn

i=1
αi2

−i < 1 ,

where α1, α2, . . . , αMn are binary digits. Then the indexes zj , 1 � j � M, are
presentable as

zj =
∑n−1

i=0
αjn−i2

i , 1 � j � M .

This allows to refer the subinterval d(z1, . . . , zM) also as d(M, v). Now establish
the mutually single-valued correspondence between all the subintervals of any par-
ticular M-th partition by accepting that d(M, v) = d(z1, . . . , zM) corresponds to
D(z1, . . . , zM) and vice versa. With account of the accepted correspondence, the
above subcube may also be referred as D(M, v).

THEOREM 2. Assume that:
1. y(x) is a correspondence defined by the assumption that for any M � 1 the

image y(x) ∈ D(M, v) if and only if x ∈ d(M, v).
2. Two subintervals d(M, v′) and d(M, v′′) have a common end-point (which

is either v′ or v′′) if and only if the corresponding subcubes D(M, v′) and
D(M, v′′) have a common face (i.e., these subcubes must be contiguous).

Then:
1. y(x) is a single-valued continuous mapping of the unit interval [0, 1] onto

the hypercube D.
2. If g(y), y ∈ D, is Lipschitzian with some constant L, then the univariate

function g(y(x)), x ∈ [0, 1], satisfies the univariate Hölder condition:

|g(y(x′′)) − g(y(x′))| � 2L
√

n + 3(|x′′ − x′|)1/n, x′, x′′ ∈ [0, 1] .

Second condition of the theorem is possible to assure by using some special scheme
for the numeration of subcubes D(z1, . . . , zM), see (see Strongin and Sergeyev,
2000). Figure 5 demonstrates the ordering of the subcubes of the fourth partition
provided by this numeration (case n = 2). The broken line stitching the subcubes
in the order of numbering goes through the common faces of the adjacent subcubes.

To compute the image y(x) with some preset accuracy ε > 0 (in coordinates) it
is possible to determine the subcube D(M, v), M > log2(ε

−1) − 1, containing this
image and then to use the central point (center of gravity) of this subcube as the
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Figure 5. Subcubes of the fourth partition (case n = 2, M = 4). Broken line stitches
the subcubes in the order of numbering passing through the common faces of the adjacent
subcubes.

approximation for y(x). Algorithms for constructing such approximations, their
theoretical justification, and the standard routines actualizing these algorithms are
given in Strongin and Sergeyev (2000).

Space-filling curves are not smooth in any x-intercept. But (as it was already
discussed) we do not rely on the local behaviour of the performance characteristics.
More important is that limitations set by Lipschitz conditions are kept under Peano
transform as uniform Hölder conditions (see the second statement of Theorem
2). This allows to tune the already considered algorithm (IMR) for the univariate
problems for solving the (reduced to one dimension) multidimensional problems.
The main adjustment is in the substitution of the new measure of distances

�i = (xi − xi−1)
1/n

in the formulas reentrant in the decision rules of the IMR.
Figure 6 presents the example of the constrained problem (case n = 2, m = 3)

solved by the described technique. Admissible points are reposing in the outlined
circle (the left-hand part of the first constraint is a quadratic function), on and
above the ellipse line (the left-hand part of the second constraint is also a quadratic
function), on and below the sine line (the left-hand part of the third constraint is
proportional to the sine function of the first argument). These points conform the
three disconnected parts constituting the admissible set. Level lines of the objective
function are also plotted within the quadratic domain of search. Points of 141 ex-
ecuted trials are marked by the dark dots. Concentration of trials in the vicinity of
the minimizer is noticeable. Trials (65) outside the circle terminated after checking
the first constraint. Those (30) in the circle (but below the ellipse line) required
checking of two constraints and the ones (20) in the crescent (but not admissible) -
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Figure 6. Level sets of the objective function and zero-level sets of the left-hand sides of the
constraints (case n = 2, m = 3). Dark dots mark the trial points.

checking of three constraints. Only for trials (26) from the three admissible subsets
all the performance characteristics were computed.

6. Non-Redundant Parallel Algorithms

The advent of parallel computers has created conditions for the elaboration of
methods which can accelerate the finding of a solution to many applied problems
(see Bersekas and Tsitsiklis, 1989; Migdalas et al., 1997; Roosta, 2000). In the
case of global optimization an usage of parallel computation is extremely attractive
because the solving of global optimization problems is very time consuming: the
time taken to evaluate the objective function at a point being long and the number
of trials needed being high even when the most efficient numerical techniques are
used (see Strongin and Sergeyev, 2000; Migdalas et al., 1997).

As a rule, when parallel methods are proposed, either the problem to be solved
or some sequential method, have an inherent parallelism and are used as the source
of elaboration. Since the first type of parallelism depends greatly on the specific
nature of the problem being solved and must be defined separately for every single
case, attention is concentrated on the second way of parallelization. Naturally,
the sequential method taken as the basis for parallelization must have elevated
estimates of the convergence speed for the class of problems under examination,
because there is no sense in using a parallel method if a more rapid sequential one
already exists. That is why the new fast sequential global optimization algorithm
introduced previously can be used as a basis for the elaboration of parallel methods.
Of course, parallel computations can also be used for an acceleration in the analysis
of the mathematical model of the object being optimized, i.e., for an acceleration
of the computations needed to evaluate the objective function at a given point. But
the organization of such an acceleration has its own particularity for every class of
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models, as the construction of the principles of a parallel choosing of trial points
refers properly to the optimization algorithms.

The functioning of the sequential global optimization methods analyzed as the
basis for the creation of parallel algorithms in general can be described as follows.
At every step, k + 1, of the sequential method, the new trial point, xk+1, is chosen
by using the search information obtained during k previous trials executed at the
points x1, . . . , xk , where the value of the objective function has been evaluated.

As has already been mentioned, in many real problems executing the trial at
even one point takes too much time and the number of trials can itself be very
high even when the most efficient sequential methods are used. In solving these
problems, parallel (simultaneous) trials on the parallel processors can significantly
accelerate the search. This means that at every step, l + 1, of the parallel method,
on the basis of information obtained during the l previous iterations (when k(l)

trials at the points x1, . . . , xk(l) were made), p points xk(l)+1, xk(l)+2, . . . , xk(l)+p

are chosen and the trial at each of them is carried out on a separate parallel pro-
cessor. Characteristics for evaluating the efficiency of such parallelization can now
be introduced.

One of the most important estimates of the efficiency of the parallel method in
problem solving is speed up in time obtained due to parallelization. Let T (1) be
the time required to solve the problem by use of a sequential algorithm and T (p)

the solution time of the same problem by the multiprocessor system with p parallel
processors. Let us call the value

S(p) = T (1)/T (p)

the speed up in time obtained by application of the parallel algorithm when com-
pared with the sequential one. The other useful way of estimating the parallel
algorithms efficiency is the speed up in iterations

s(p) = n(1)p/n(p) ,

where n(1) is the number of trials required by the sequential method in the problem
solving, and n(p) the number of trials required in using the parallel algorithm with
p processors to solve the same problem.

Many applications exist where the time taken in evaluating the objective func-
tion ϕ(x) is constant. Taking advantage of this peculiarity helps to organize paral-
lelization in the most efficient way and later investigations will consider this kind
of global optimization problems.

We can now correlate the values S(p) and s(p). Let T be the time required
to evaluate ϕ(x) at one point and t the time taken in realizing the algorithm’s
decision rule, i.e., the time required to choose the new trial point. In the methods
analyzed, this time depends on the quantity of accumulated search information and
on the number of parallel processors (see Strongin and Sergeyev, 2000) and can be
approximately described by the following formula

t ∼= t (n(p)) = αn(p)/p,
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where α > 0 is a parameter. The value S(p) can then be calculated as follows

S(p) ∼= T n(1) + α(1 + 2 + · · · + n(1))

T n(p)p−1 + α(p + 2p + · · · + n(p))p−1
.

In the case T � t we obtain that

S(p) → n(1)p/n(p) = s(p).

In the case t � T , it follows that

S(p) → s(p)2.

This means that s(p) has a decisive influence on S(p) and conditions which ensure
the maximal levels of s(p) will be discussed further.

Naturally, in using p parallel processors it is desirable to obtain the speed
up s(p) = p but this, unfortunately, is not always possible. The problem con-
sists in the fact that the accepted parallelization scheme is not trivial from the
information point of view (as happens, for example, when a cycle of assignment in
programming is parallelized). This point will now be discussed in detail.

Consider a sequential method (SEQ) and its parallel version (PAR). In choosing
the point xk+1 at the (k+1)-th iteration, the SEQ has all the information hitherto ob-
tained during the previous k iterations at the points x1, . . . , xk . On the basis of the
same information, the PAR chooses not one but p > 1 points xk+1, xk+2, . . . , xk+p .
This means that the choice of the point xk+j is made in the absence of information
concerning the results of the trials at the points xk+1, . . . , xk+j−1, 2 � j � p.
Consequently, only the first point, xk+1, is defined on the basis of full information
and coincides with the point chosen by the sequential method. The other p−1 trials
of the parallel method can be made at those points which differ from those at which
the SEQ effects its trials. These trials can slow down the search and so reduce the
efficiency of use of the parallel processors. Let us call these trials redundant, and
the value

z(p) =
{

(n(p) − n(1))/n(p), n(p) > n(1),

0, n(p) � n(1),

the redundancy of the parallel method. It is evident that

s(p) = p(1 − z(p)) .

It can be seen from these formulas that in minimizing the redundancy speed up
is maximized. In the non-redundant search case, i.e., when z(p) = 0, a speed up
equal to the number of parallel processors used is obtained.

Let us consider a parallel version of the method introduced above. It can be
taken as a basis for parallelization because of the following reasons:
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1 it belongs to the class of information methods having quite satisfactory es-
timates of the convergence speed (see Strongin and Sergeyev, 2000) when
compared with other methods working with the Lipschitz functions;

2 the probabilistic nature of the algorithm allows its natural generalization to
the parallel case;

3 the accepted idea of parallelization can be generalized and applied to a wide
class of sequential global optimization algorithms (see Strongin and Sergeyev,
2000);

4 the same way of parallelization can be generalized for the elaboration of
multi-dimensional parallel global optimization methods using the fractal ap-
proach introduced previously.

In order to concentrate our efforts on parallelization, the simplest case - where the
feasible region is an interval (a, b), i.e., the problem of finding

ϕ(x∗) = min{ϕ(x) : x ∈ (a, b)} ,

where the objective function ϕ(x) is multiextremal and satisfies the Lipschitz con-
dition - will be considered. Let us describe the information algorithm with parallel
trials (IAPT).

Algorithm. The trials of the first iteration are made at p = p(1) � 1 arbitrary
internal points of the interval (a, b). Suppose, now, that n � 1 iterations of the
method have already been executed. The trial points of the next (n+1)-th iteration
are then chosen by using the following rules:

1. Order trial points x1, . . . , xk(n) of the previous k(n) trials by increasing their
coordinates, where

k(n) = p(1) + p(2) + · · · + p(n),

a = x0 < x1 < x2 < · · · < xi < · · · < xk < xk+1 = b ,

and the points a = x0, xk+1 = b have been included in the row to assure the
unique description of all the subintervals [xi−1, xi ], 1 � i � k + 1, of the
interval [a, b].

2. Calculate the value

M = max {|zi − zi−1|/(xi − xi−1) : 1 < i � k} ,

where zi = ϕ(xi) are the results of the trials effected at the points xi, 1 � i �
k, and the values z0 and zk+1 are not defined.

3. Calculate the characteristic R(i) of every subinterval [xi−1, xi], 1 � i �
k + 1:

R(i) =




�i+ (zi−zi−1)
2

M2�i

− 2(zi+zi−1)

rM
, 1 < i � k,

�1 − 4z1/(rM), i = 1,

�k+1 − 4zk/(rM), i = k + 1,

where r > 1 is the reliability parameter of the method and �i = xi − xi−1.
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4. Order the characteristics R(i) by decreasing the indexes tj , 1 � j � k + 1:

R(t1) � . . . � R(tj ) � . . . � R(tk+1) .

5. Execute the next p = p(n + 1) trials of the (n + 1)-th iteration at the points
xk+1, . . . , xk+p where

xk+j = (xtj + xtj −1)/2 −
{

0, tj = 1 or tj = k + 1,

(ztj − ztj−1)/(2rM), 1 < tj � k,

and tj , 1 � j � p, are indexes of the first p intervals having highest charac-
teristics. It is assumed that

p = p(n + 1) � min{k(n) + 1,Q}, n � 1 ,

where Q � 1 is the constant defining the maximum number of processors
which can be used for the parallelization.
The stop condition will terminate the search when, for at least one index
tj , 1 � j � p, the inequality

xtj − xtj −1 � ε ,

holds, where ε > 0 is a given search accuracy.
The algorithm described generalizes, for the parallel case, the sequential informa-
tion algorithm (SIA), the calculation scheme of which can easily be obtained from
the decision rules described above by assuming

p(n) = 1, n � 1 .

This type of parallelization of the SIA is based on the following argument. The
sequential information algorithm SIA was constructed on the basis of the stochastic
model, according to which the interval having the maximal characteristic can be
interpreted as being the interval with the highest probability of containing the
global minimizer. In the stochastic model, the intervals [xi−1, xi], 1 � i � k + 1,
are ordered according to the decreasing probability of the global minimizers being
localized in them.

It is natural to assume that, in the case when, at the (n + 1)-th iteration, there
are p = p(n + 1) > 1 parallel processors, p parallel trials will simultaneously
be carried out at the intervals having p highest characteristic; namely, at those p

intervals having the highest probability of the global minimizers being localized in
them. This idea of parallelization has shown itself to be very fruitful and has been
generalized for certain other global optimization algorithms (numerous examples
can be found in Strongin and Sergeyev, 2000). It can be shown that this kind of par-
allelism does not produce limit points different from those of the purely sequential
scheme.
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Figure 7. Dynamics of the global search executed by the sequential algorithm.

Figure 8. Dynamics of the global search executed by the parallel algorithm working with two
parallel processors.
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Figure 9. Dynamics of the global search executed by the parallel algorithm working with
three parallel processors.

Let us illustrate the algorithms by numerical experiments executed with Shu-
bert’s test function (see Figures. 7–9). In Figure 7 behaviour of the SIA is presen-
ted. Vertical strokes under the graph of the test function represent trials done by the
SIA. The diagram below shows (from top to bottom) dynamics of the search. The
stop condition has been satisfied after 42 trials. Figure 8 shows the behaviour of the
IAPT with two parallel processors. The algorithm has done 39 trials during 20 it-
erations. Trials executed by the first processor are linked on the dynamics diagram.
It can be seen from the diagram that after the first initial iteration two trials are
executed during every iteration (these trials are linked by horizontal lines). Figure 9
presents results of minimization with three parallel processors. During 15 iterations
42 trials have been done (one during the first iteration, two during the second one,
and three trials during the remaining iterations). In all three experiments the first
trial has been done at the same point. Thus, in both cases where the IAPT worked
with parallel processors no redundant trials have been generated.

Let us study theoretical conditions of non-redundant parallelism. We denote
by {xk} and {ym} the trial sequences generated by the sequential and parallel al-
gorithms, respectively, for the same function ϕ(x), x ∈ (a, b), at ε = 0 in the stop
condition (infinite search). The following theorems (see Strongin and Sergeyev,
2000) show how many parallel processors Q can be used in order to achive the
non-redundant search and, consequently, high levels of speed up.
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THEOREM 3. Let the number Q of parallel processors used during the search by
the parallel algorithm IAPT be equal to 2. Assume that the following conditions
are satisfied:

1. The initial trial points are the same for the sequential and parallel methods,
i.e., y1 = x1.

2. In both algorithms for the value M a constant exceeding the Lipschitz con-
stant L is used and the choice of the parameter r ensures sufficient conver-
gence conditions of both methods, i.e.,

M � L, r � 2 .

Then:
1. If x∗ and x∗∗ are global minimizers of the function ϕ(x) and the first trial

has been executed at a point y1 such that x∗ < y1 < x∗∗, then s(2) = 0.
2. If the reliability parameter r > 2 + √

5, then s(2) > 1.66.

This theorem establishes the conditions in which use of the IAPT with two parallel
processors accelerates the search twice. As the objective function ϕ(x) is multiex-
tremal, a quite natural supposition about existence of a local minimizer x′ can be
made. This supposition enables us to establish conditions in which it is possible
to use more parallel processors with a bounded number of redundant trials and,
therefore, to obtain a major speed up of the search.

THEOREM 4. Assume that conditions of Theorem 3 hold and let the inequality

ϕ(x′) − ϕ(x∗) � δ, δ > 0,

be fulfilled. Then, if there exists a trial point yn̂ ∈ {ym} such that x′ � yn̂ � x∗ or
x∗ � yn̂ � x′ takes place, the following assertions hold for the IAPT and n > n̂:

1. For Q = 4, r > 2 + √
5 it follows that s(4) > 3.32, while

xtj − xtj −1 > ε , 1 � j � p .

2. If Q = 3, r > 2 + √
5 are used in the IAPT while

ε < xtj − xtj −1, 1 � j � p ,

and

xtj − xtj −1 � ε ,

at least for one j, 1 � j � p, it then follows that s(3) > 2.66.
3. For Q = 2, r > 1 + √

2, it follows that s(2) = 0, while

xtj − xtj −1 > ε , 1 � j � p .
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In all the assertions ε and ε are calculated in the following way:

ε = 4δr

M(r2 − 2r − 1)
, ε = 4δr

M(r2 − 4r − 1)
.

The introduced theorems show how to use parallel computers without redundancy.
If the user has additional information about the structure of the problem, then it is
possible to ensure high levels of speed up. More difficult is the problem, higher is
the number of processors which can be used without generation of the redundant
trials. For example, if the problem has three local minimizers close to the global
one, then it is possible to use up to eight parallel processors with the speed up close
to the number of applied processors.

The described algorithm can be generalized for solving multidimensional prob-
lems with multiextremal constraints by using the fractal approach and the index
scheme for both cases of synchronous and asynchronous computations (see Strongin
and Sergeyev, 2000).

7. Test Example in Five Dimensions

Consider the problem of minimizing the function

ϕ(w) = sin(xz) − (yv + zu) cos(xy)

over the domain of search

−3 � x, y, z � 3, −10 � u, v � 10 ,

subject to the functional constraints:

g1(w) = −(x + y + z + u + v) � 0,

g2(w) = (y/3)2 + (u/10)2 − 1.4 � 0,

g3(w) = 3 − (x + 1)2 − (y + 2)2 − (z − 2)2 − (v + 5)2 � 0,

g4(w) = 4x2 sin x + y2 cos(y + u)+
+z2[sin(z + v) + sin(10(z − u)/3)] − 4 � 0,

g5(w) = x2 + y2[sin((x + u)/3 + 6.6) + sin((y + v)/2 + 0.9)]2−
−17 cos2(z + x + 1) + 16 � 0;

w = (x, y, z, u, v) ∈ S

where S ⊂ R5 is the described above domain of search.
The problem was solved by employing a uniform grid technique with the mesh

width equal to 0.01 in each coordinate, which required (with account of some
symmetry allowing to reduce the domain of search) about 1012 trials. The obtained
best admissible node

w′ = (−0.06, 2.20, 2.40, 9.28, 9.63)
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Figure 10. xz-section (top) and uv-section (bottom) of the domain of search for the
five-dimensional test problem passing through the point w∗ (marked by the dark dot). Bottom
picture also presents the two-dimensional section of the admissible set.

characterized by the value ϕ(w′) = −43.22 after it was locally refined with accur-
acy 0.0001 in each coordinate, yielded the value ϕ∗ = −43.2601 at the point

w∗ = (−0.0521, 2.2041, 2.3911, 9.2747, 9.6389).

To illustrate the complexity of this problem Figure 10 presents two two-dimensional
sections of the domain of search S passing through the point w∗; the image of this
point is marked on both sections by the dark dot. Top picture corresponds to the
xz-section, i.e., it gives the image of the square containing all the points

w = (x, 2.204, z, 9.275, 9.639) ∈ S,

−3 � x, z � 3. Lines on this picture furnished with integers 4, 5 plotted in the
vicinities of these lines present the loci of the points w satisfying the respective
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equations gi(w) = 0; the above numbers i = 4, 5 are plotted inside the admissible
area for the corresponding constraints gi(w) � 0. Level lines of the objective
function ϕ are also plotted on the picture.

The bottom picture exposing the uv-section of S is drawn in a somewhat dif-
ferent way – it also presents the uv-section of the admissible set for the problem
under consideration but all the lines outside the admissible set are deleted. Note
that −10 � u, v � 10 though both squares on the pictures are drawn as if they are
of the same size.

Next, the problem was transformed to the standard cubic domain of search D

and solved by the above described Index Method employing the Peano curve y(x)

approximated by the centers of the 11th partition subcubes.
The search process required in total 59 697 trials and in each of these trials

the auxiliary zero constraint was tested. The functions g1 ÷ g6 were computed
respectively k1 = 22915, k2 = 22307, k3 = 20948, k4 = 20802, k5 = 17472,
k6 = 3877 times (mind that g6 = ϕ). Settings for all the parametrs of the algorithm
are given in (Strongin and Sergeyev, 2000).

The obtained estimate

w′′ = (−0.068, 1.962, 2.431, 9.833, 9.833)

characterized by the value ϕ(w′′) = −42.992 after it was locally refined with the
accuracy 0.0001 in each coordinate yielded the value ϕ∗∗ = −43.2985 at the point

w∗∗ = (−0.0679, 1.9434, 2.4512, 9.9013, 9.9008) .

which is better (in the objective function value) than the estimate obtained by the
uniform grid technique.�
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